Colour vision is used by many animals to escape predation, communicate with other individuals, find food and mates, and navigate through complex habitats. Our understanding of animal vision has contributed to the development of digital cameras, image sensors, optical devices such as telescopes and microscopes, and computer vision algorithms. Furthermore, understanding the visual performance of animals has widespread implications in neuroscience, ecology, conservation, evolution and animal welfare.

Humans have the capacity to perceive millions of different colours with only three types of cone photoreceptors with different spectral sensitivities — red, green, and blue (RGB), or trichromacy. Other animals, including many species of birds and fish, have four or five spectrally distinct cones (tetra- and pentachromacy), often capable of detecting ultraviolet (UV) radiation and/or longer wavelengths. Theoretically, this should enable them to perceive and discriminate among billions of colours and utilise a colourful richness in visual scenes that we are unable to detect. Yet we do not know how tetrachromic and potential pentachromatic animals combine information from these different photoreceptors, send it to the brain, and convert it into visual perception. This represents a significant gap in our basic understanding of animal vision.

As part of this Honours project, you will perform behavioural experiments with fish to examine their visual capabilities using newly developed methods from our lab.

Supervisor: Dr Karen Cheney